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Several mathematical properties associated with the simple Michaelis-Menten mechanism 
for enzymatic reactions are proven. In particular it is shown that the usual interpretation of  the 
slope of the experimental Michaelis-Menten rate law in terms of the reaction constants of  the 
mechanism can be obtained, in the approximation in which the total concentration of  the 
enzyme is small compared with the Michaelis-Menten constant, independently of the ratio 
between the total initial concentrations of the enzyme and substrate. Furthermore, the ratio of 
the total concentration of the enzyme to the Michaelis-Menten constant allows for the elimina- 
tion of a fast variable in a singular perturbation method, yielding the Michaelis-Menten rate 
law as a first order approximation. 

1. I n t r o d u c t i o n  

Since the work of Michaelis and Menten on enzymatic reactions, in 1913 [1], 
the idea exists that, for complex chemical reactions, there are basically two types of  
reacting species depending on their time behaviour: the long-lived reactives, also 
called slow variables, and the intermediates, short-lived ones or fast variables that  
for all practical purposes are undetectable in the time scale at which the long-lived 
ones are measured. This idea has been widely used [2] to relate a proposed mechan- 
ism to the experimentally established rate law that contains only the long-lived spe- 
cies and which, in general, does not conform itself to the kinetic mass action law 
of Guldberg and Waage. 

The connection between the proposed mechanism involving intermediates and 
the experimental rate law has been made through the hypothesis [2-5] of  " the 
pseudo steady state" which assumes that after a transient period the concentration 
of  intermediates reaches an almost constant value. It also assumes that the concen- 
tration of  the intermediates is constant through the remaining life of the reaction. 
In the case of  Michaelis and Menten reactions, the transient period is considered to 
be a very short one, such that the whole measurable life of the reaction takes place 
in the steady state for the intermediate [5,6]. 
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The mathematical  demonstrations of the theorems that a system of differential 
equations must  satisfy in order that it justifies a pseudo steady state approximation 
have been worked out [7], including the Michaelis-Menten mechanism. Here we 
shall not dwell on this mathematical aspect of the problem; our main objective is to 
exhibit the appropriate parameter of smallness that leads from the mechanism to 
the rate law. 

The pseudo steady state hypothesis has been justified as an approximation and 
a connection between the mechanism and the rate law has already been established 
for the Michaelis and Menten reactions without using the pseudo steady state 
hypothesis itself [8,9]. Indeed, it has been shown that under the assumption that the 
enzyme concentration e0 is relatively small with respect to the substrate concentra- 
tion so, the rate law is obtained as the degenerate case in a singular perturbation 
treatment of the kinetic equations of the mechanism. The same ratio was shown to 
be the one that makes the rate law compatible with the mechanism [7]. However, 
this result was found based upon a definition of the two time scales involved in 
terms of s0. Perturbation techniques have also been used for other types of reactions 
[7,10,11] and for particular cases, namely, for particular values of the rate constants 
of the Michaelis-Menten mechanism [7,11-13]. 

An estimative evaluation of the two time scales associated with several 
Michaelis-Menten mechanisms, simple, reversible and with inhibitor, using the 
assumption of the pseudo steady state itself is available [5,14]. This estimate indi- 
cates that the ratio of the initial enzyme concentration to the sum o f  the substrate 
initial concentration so plus the Michael is-Menten constant Ks, is the parameter  
that, when small, leads, through the singular perturbation method, to the rate law. 
This was the first time that attention was drawn to the fact that the smallness 
parameter  appropriate to recover the empirical rate law from the mechanism is not 
eo/so. This estimate, however, is based on the pseudo steady state hypothesis itself. 
More complicated mechanisms of the Michaelis-Menten type [15,16] have been 
analyzed under the assumption eo/(so + Ks) << 1 when eo/so is not  small. 

In the present paper, we study the simple Michaelis-Menten mechanism, and 
demonstrate several of its properties in a systematic way. In particular we show 
that the exact expression for the asymptotic slope at equilibrium in coordinates, 
rate of  product ion vs. substrate, is a function of the enzyme initial concentration 
and the Arrhenius constants of the mechanism only, with the substrate initial con- 
centration so playing no role at all. As a consequence, we are able to show, in an 
exact way, that when the concentration of enzyme e0 is small compared to the 
Michaelis-Menten constant Ks, the slope at equilibrium calculated from the 
mechanism coincides with the slope from the rate law. A further consequence is 
that the rate law is recovered from the mechanism through the singular perturba- 
tion method when eo/Ks is small. In this way we show that the appropriate criterion 
to obtain the Michaelis-Menten empirical law from the mechanism via perturba- 
tion analysis is the smallness in eo/Ks, independently of the ratio eo/so. Further- 
more, the criterion eo/K~ << 1 is stronger than eo/(so + Ks) << 1; in fact, whenever 
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the condition eo/Ks << 1 is satisfied, the condition eo/(so + Ks) << 1 is also satisfied; 
the converse, however, is not true. It can also be seen that when the method of per- 
turbat ion analysis is employed using as a smallness parameter eo/so << 1, one is in 
factusingeo/Ks << 1. 

In 1985, Van Kampen [17] formalized and classified the equations pertaining to 
the physical processes that can be characterized by two different time scales. He 
established a general singular perturbation method for elimination of the fast vari- 
ables (the short-lived ones) to derive the overall rate law of the process from the 
assumed mechanism. His scheme has been applied to several chemical reactions 
[18,19]. Here we apply it to the Michaelis-Menten system once we have found that 
the mechanism yields the near equilibrium experimental slope when the parameter  
eo/Ks << 1 independently of the ratio eo/so. 

The geometric relation in the phase space of the rate laws obtained in the pseudo 
steady state and equilibrium state hypothesis for the Lindeman and enzymatic 
mechanisms and their numerical solutions has been studied in refs. [20-23]. In these 
references the whole basin of solutions in the phase space, the complex concentra- 
tion versus the substrate concentration, for the simple Michaelis-Menten mechan- 
ism and more complicated enzymatic mechanisms were shown, and a functional 
iterative solution was presented that allows for the location of  the attractor of the 
solutions. This allows for a different alternative method to solve the problem of 
numerical evaluation of the constants of the mechanism in terms of the empirical 
constants and initial concentrations. Several properties, inherent to the mechan- 
ism, are contained in refs. [20-23]. However we demonstrate and use some of them 
in a different context, to serve our above-stated purposes which are concerned 
with the smallness parameter that makes compatible the equations of the mechan- 
ism and the rate equation specifically via the elimination of a fast variable. 

2. Genera l  proper t ies  

In this section we prove several features of the simple Michaelis-Menten 
mechanism. We particularly emphasize the values of the slope at different points in 
some of  the different spaces in which the Michaelis and Menten mechanism can 
be related to experiments. 

The conversion reaction of the substrate S into product  P with the assistance of  
the enzyme E is represented by the following mechanism, the so-called simple 
Michaelis-Menten: 

S+Ek~--~t C ~ P + E ,  (2.1) 
k2 

where C represents the intermediate (complex) and the ki, i = 1, 2, 3, are the rate 
constants. According to the mass action law, the mechanism (2.1) implies the fol- 
lowing equations for the time rate of change of the involved concentrations: 
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ds 
- -  = - k l s e  + k2c, 
dt 

de 

dt 
- . k l s e + k 2 c + k 3 c ,  

dc 
dt k l se  k2c k3c,  

dp = k3c.  (2.2) 
dt 

Here we denote by lower-case letters the concentrations corresponding to the spe- 
cies represented by capital letters. 

We notice that d(e  + c ) /d t  = 0 and that d(s  + p  + c ) /d t  = 0. Therefore, there 
are two constants of motion and only two concentrations remain independent. If at 
an initial time, t = 0, 

s ( t = O ) = s o ,  e ( t = O ) = e o ,  c ( t = O ) = c o  and p ( t = O ) - - - O ,  (2.3) 

the constants of motion are given by 

e + c = e o + c o  and s + c + p = s o + c o .  (2.4) 

We choose c andp as the independent concentrations, and the independent equa- 
tions of motion are then given by 

--- kl(S0 + co - p - c)(eo + co - c) - (k2 + k3)c,  (2.5) 

p = k3c,  (2.6) 

where the dot above the symbol denotes the time derivative. 
Below, with the help of (2.4) we underline the mathematical properties of the 

involved variables, that will come useful later. From the physical fact that they are 
concentrations, the following inequalities must always be obeyed: 

c>~0, 

p>~0, 

e0 + Co - c~>0, 

so + co - c - p ~ > 0 .  (2.7) 

The set of eqs. (2.5) and (2.6) is subjected to the initial conditions (2.3), which 
imply that 

~(t = O) = kxsoeo and p( t - -  0) = k3co . (2.8) 
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On the other hand, calling f~ the time at which equilibrium has been achieved, we 
have 

k ( t = f ~ ) = 0  and p ( t = f ~ ) = O ,  (2.9a) 

which leads to the equilibrium values: 

c ( t = f ~ ) = O  and p ( t = f ~ ) = s o + c o .  (2.9b) 

From eq. (2.5) and the third inequality in (2.7) we find that c(t) has a maximum 
c(to) = Cm at time to; as a consequence, from eq. (2.6) we see thatp(t) takes a maxi- 
mum value, 

p ( t  = to) = k3Cm, (2.10) 

and that therefore p has an inflexion point p(to) = Pi. From eq. (2.5) we obtain 
that at time to the following relation holds: 

kl(s0 + co - -  P i  - -  Cm)(eo + co - cm) - (k2 + k3)cm = 0. (2.11) 

Furthermore from the difference between eqs. (2.5) and (2.11) and due to the 
inequalities (2.7) it is easily shown that for c < Cm andp < Pi, 

k > 0 (2.12) 

must hold. 
Up to now, from the conditions (2.3), (2.8), (2.9), the expression (2.10) and the 

property (2.12) we have some general information concerning the time behaviour 
ofp and c. Also, because there is a maximum Cm and due to the first equilibrium con- 
dition in (2.9a), b must be negative for t > to. In fig. 1 we plot c(t) andp(t)  where 
the above-mentioned features are exhibited. The figures shown in this paper are 
included here for the sake of illustration and clarity. Other authors [14] using differ- 
ent values for the parameters have obtained similar graphs. 

We now focus on the problem of obtaining general information aboutp(s), since 
(s,p) is the space of the Michaelis-Menten rate law. To achieve this goal, it is help- 
ful to study first the behavior of c(p). We start by noticing that since the right- 
hand sides of eqs. (2.5) and (2.6) are not explicit functions of time, the slope of c(p), 
dc/dp, is given by 

k k l { ( s o + c o - p - c ) ( e o + c o - c )  k 2 + k 3 }  (2.13) 
t5 k3 c kl " 

Furthermore, with the help of the inequalities (2.7), after rearranging eq. (2.13), 
we find that the inequality 

k3k/p + k2 + k3 >10 (2.14) 

must always hold. From expression (2.13) we now obtain the value of the slope at 
selected points of the curve c(p). First, with the help of the initial conditions (2.3) 
and (2.8), we find that the slope at the origin is 
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Fig. 1. Numerical solution of eqs. (2.5) and (2.6) with kl = 1.0, k2 = 0.02, k3 = 0.98, eo = 5.0, 
co = 0, and so = 1.0. C and P denote the complex and product concentrations, respectively. 

l im b/p = lim b/b ki {so k2 + k 3 \  (2.15) 
, - 0  = 7oo g J" 

Second, with the help ofeq.  (2.10), we verify that  

(c/P)cm~o, = 0 ,  (2.16) 

and  third,  that  the value of  the slope at the equil ibrium point ,  (p = so + co, c = O) 
is given by the following limit: 

!lmn.~C/b-~-t" " "  lim(kl'~{ C k2 kltk3} " (2.17) 

After  applying the equil ibrium condit ions (2.9b), L 'H6pi ta l ' s  rule, and  the 
defini t ion 

1? ------ Ii2~ bib (2.18) 

to expression (2.17), we find the equat ion 

k3]P 2 + (kl (eo + co) + k 2  + k 3 ) ] P + k l ( e o  + co) = O, (2.19) 

whose solutions,  bo th  negative, are 

= - ( k l  (eo + Co) + k2 + k3) 4- [(kl (eo + co) + k2 + k3) 2 - 4kik3(eo + co)] 1/2 

2k3 2k3 
(2.20) 
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In order to discern the physical meaning of these solutions, we subject them to con- 
dition (2.14), which implies, upon substitution of 2k3I? from (2.20) into (2.14), 
that either one or both of the solutions, in order to be physically acceptable, must 
satisfy the inequality 

k2 4-k3 - kl(e0 4- co) :tz [(kl(e0 + co) + k 2  + k 3 )  2 - 4klk3(eo + c0)]1/2>0.  

This expression may be rewritten as 

k2 + k3 - kl (e0 + co) + [(k2 + k3 - kl (e0 + c0)) 2 + 4klk2(eo + c0)] 1/2 , 

from which we see that the inequality holds only for the plus sign. Thus, the physi- 
cally acceptable expression for the slope at equilibrium in c(p) is 

]p = -(kl(e0 + co) + k2 + k3) 4- [(kl(e0 + co) 4- k2 + k3) 2 - 4klk3(eo + c0)] 1/2 
2k3 2k3 

and notice that 

(2.21) 

I? < O. (2.22) 

Moreover, as it is proved next, 

lP~> - 1 .  (2.23) 

Thus, from eqs. (2.15), (2.16), (2.21) and conditions (2.22) and (2.26) we have 
some general information about the behavior of c(p) as predicted from the mechan- 

k/p > O. (2.26) 

Indeed, the solution I? can be written as 

] p _ - ( k l ( e o  + Co) +k2 + k 3 )  + (kl(eo + co) +k2 - k3) 
2k3 2k3 

I 4k2k3 2.] 1/2 , (2.24) 
× 1 -t (k l(eO+co) + k z - k 3 )  

where we see that in the case k2k3 --+ 0, I? = - 1, otherwise 17 > - 1. 
The slope I? can also be obtained from the eigenvalue of the slow manifold 

through linearized stability analysis [21 ] at equilibrium. 
Also, from the difference between eqs. (2.13) and (2.16) we have that 

k /p  = k33k1 ((s0 + ,  co - P -cC ) ( eo + c o - c )  _ (so 4- cO -- P i -- cmCm ) ( eo 4- CO--Cm)~) , 

(2.25) 

from where it is immediately seen that for c < Cm andp < Pi, 
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ism, independently of the particular physical cases one might want to consider 
with respect to relative concentrations and reaction constants values. Here again 
we have that because of conditions (2.16) and (2.22), k ip  must be negative for 
t > to. These features are illustrated in fig. 2. 

We now proceed to investigate the consequences of the Michaelis-Menten 
mechanism (2.1) in the space (s, p), where the mechanism, represented by eqs. (2.5) 
and (2.6), and the Michaelis-Menten rate law are to be compared. We already 
have some information concerning the behavior ofp(s). In fact there is the initial 
point (s = so,p = k3c0) because of conditions (2.3), a maximum point (so - Pi - cm, 
k3c,,,), and because of conditions (2.9), the equilibrium point (s = 0, p = 0). There- 
fore, the system evolves towards the origin of the coordinates and thus the equili- 
brium occurs at the origin. More information concerning the general shape of the 
curve p(s)  is obtained from the values of the slope at the above-mentioned points. 
The equation for the slope dp /ds  is obtained almost immediately fromp/& In fact, 
using the expression dp /ds  and because of the properties of derivatives, we first 
have that 

dp _ ~ (2.27) 
ds - p  - ~ ' 

and second, with the help ofeq. (2.6), that 

dp _ k3b (2.28) 
ds 
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Fig. 2. Numerica l  solution ofeqs.  (2.5) and (2.6) with ki = 1.0, k2 = 0.02, k3 = 0.98, e0 = 5.0, co = 0 
ands0 = 1.0. Complex concentrat ion vs. product  concentration. 
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We now find, from eq. (2.28) and conditions (2.8), that the value of the initial slope, 
in the space (s,p), the space of the rate law, is 

lim [ -  k3k ] =  lin~[- k3k ] _  k3 (2.29) 
s-~s0+c0L P + ~ J  I P + k J  1+  k~co " 

p---,O klsoeo 

For the usual experimental conditions where co = 0, the value of the initial slope 
is equal to the constant k3. 

We verify from eq. (2.28) that the slope at (so - P i  --  Cm, k3cm)  is zero, and that 
at equilibrium eq. (2.28) becomes, using the definition (2.18), 

lim dp l im@ k37 (2.30) 
s--,o -~s = t - .ads  - 1 +I? " 
c--+O 

This last result is the exact value of the asymptotic slope ofp(s) at equilibrium 
for all possible cases of different ratios of enzyme to substrate and for different k i .  

Because of the inequalities (2.22) and (2.23) it will be always positive. Thus the slope 
of the Michaelis-Menten rate law must be recovered from eq. (2.30) in some 
approximation or as a particular case. This is shown in the next section along with 
two other near equilibrium possible cases. 

3. Near  equil ibrium particular cases 

In this section we show two of the possible approximations to the near equili- 
brium slope (2.30) that arise from the mechanism (2.2) and represent possible phy- 
sical cases. 

Let us first recall the empirical Michaelis-Menten rate law, 

KreoS (3.1) 
b(s)  s + Ks ' 

whose slope is given by 

( d p )  KrKseo (3.2a) 

r = (s  + Ks)  2 

and which near equilibrium becomes 

lim ( d p ) ( d , ) K r e o  
t-~n dss r = lim Ks s--,0 ds r -  (3.2b) 

Here K~ and Ks are empirical constants. We now want to show the approximation 
that yields eq. (3.2b) from eq. (2.30) and the ensuing identification of the ki's in 
terms of the empirical constants. To do so, we need to take into account the infor- 
mation from the experiments that have led to the law (3.1). To our knowledge, in all 
the experiments reported in the literature, the initial complex concentration co is 
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Fig. 3. Numerical solution of eqs. (2.5) and (2.6) with kl = 1.0, k2 = 0.02, k3 = 0.98, eo = 5.0, 
co = 0, and so = 1.0. Rate of production b vs. substrate concentration s = so - c - p. 

zero and the assertion is made that the enzyme concentrat ion is low either with 
respect to the initial substrate concentrat ion or with respect to the sum of  initial 
substrate concentrat ion plus the Michael is-Menten.  Since the initial substrate con- 
centrat ion does not  play any role in eq. (2.30), we only have the possibility of  trying 
approximat ions  based on the relative values of  e0 and combinat ions  of  the ki's. In 
what  follows, we present two possible approximations of  eq. (2.30), for the case 
co = 0, involving e0 and the k;, that produce, for the slope at equilibrium, a ratio of  
constants  multiplied by  e0. Both of  them are independent of  the value of  the ratio 
eo/so, and both  can be compared  with the empirical slope (3.2b). The just if icat ion 
to choose one of  them as the correct one will be shown in the next section. 

Let us consider the first case; assume that 

k2 q-k3 (3.3) eo << kl 

It is easily seen that this approximation implies that 

klk3eo 
(kleo + k2 + k3) 2 << 1 

or, since the compar ison is between orders of  magnitude, that  

4klk3eo 
(kle0 + k2 q- k3) 2 << 1. (3.4) 

Therefore,  in view of  the inequality (3.4), the near equilibrium slope (2.21) 
becomes,  to first approximat ion in eokl / (k2 + k3), 
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kl e0 
= - , ( 3 . 5 )  

IPMu kleo + k2 + k3 

where we have in t roduced the subscript M M  to stress the fact tha t  eq. (3.5) is a par-  
t icular approx imat ion  to ]?. Subst i tut ing this last result into eq. (2.30) we arrive at 

l im d p )  k3kleo 
t--,a d - ~  Mac- k2 + k3 " (3.6) 

Compar i son  of  both  slopes, (3.2b) and (3.6), leads us to 

k3kl Kr 
k2 + k~ - Ks" (3.7) 

I f  we identify Ks as it is usually done [4-6], 

k2 + k3 
& - - ,  ( 3 . 8 )  

kl 

then Kr = k3 and the identification of  the slope (3.6) with (3.2b) follows. The  coinci- 
dence of  slopes (3.2b) and (3.6) is exhibited in fig. 4, where we show the numer ica l  
solut ion of  the mechanism's  equations (2.5) and (2.6), in the (s, p) space, super im- 
posed  to the graph  of  the Michael i s -Menten  rate law, eq. (3.1). For  fig. 4 we have 
used values for the ki's and e0 that  satisfy condi t ion (3.3) with eo/so = 1 to stress the 
fact tha t  if condi t ion (3.3) is satisfied, given the nature  of  the reacting species ( that  
determines  the ki's), the slope (3.6) will be always obta ined independent ly  of  the 
ratio eo/so and not  only when eo/so is small. 
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Fig. 4. A is the numerical solution of the eqs. (2.5) and (2.6) with kl = 1.0, k2 = 0.01, k3 = 0.9, 
e0 = 0.01, co = 0 and so = 0.01. B is the solution ofeq. (3.1) with Kr = 0.9 and Ks = 1. 
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The second case we consider is the high enzyme concentration approximation. 
Let us assume 

kleo >> k3, (3.9a) 

which implies that 

(kleo + k2) >> k3, (3.9b) 

and rearrange the slope (2.21) to read 

k3(k3+2k2_2kleo) ] 1/2 
-(kle0 + k2 + k3) -k- (k~eo + k2) [1 + (kle0+k2)2 j 

]? ----- 2k3 (3.10) 

We now use the inequality (3.9b) to approximate the root in eq. (3.10) to first order 
in k3/(k~eo + k2). The result is 

kleo 
17~-  (3.11) 

kl e0 + k2 

After substitution in (2.30) the equilibrium slope becomes 

dp (3.12) \t~a(lim ~S) H E- klk3eOk2 

Further sub-cases are obtained from this result depending on the magnitude of k2 
as compared with k3. 

Since in both cases, low and high enzyme concentrations, the comparison is 
made with combinations of the ki's and not with respect to the substrate concentra- 
tion, as far as the equilibrium slope is concerned, the comparison could have been 
made also between expressions (3.2b) and (3.12) leading to the identification of Kr 
with k3 and Ks with kz/kl or to the identification Kr with kl and Ks with k2/k3 or 
any other identification. However, as it will be shown in the next section, following 
the idea expressed in refs. [8] and [18], the correct comparison is the one between 
expressions (3.2b) and (3.6) since it is the parameter eokl/(k2 + k3) that allows for 
the recovery of the law (3.1) from the mechanism embodied by the eqs. (2.5) and 
(2.6) using a perturbative method. 

It must be also pointed out that it has been shown [23] that the steady-state 
approximation, ~ = 0, that yields eq. (3.1) is asymptotically a better description 
than the fast equilibrium hypothesis (k = 0 in the space (s, c)), which leads to the 
same type of law as (3.1) but which we do not consider in the present communication. 
With regard to the evaluation of the separate ki's, the reader must consult ref. [23]. 

4. Fast  variable el imination 

In this section we show that the Michaelis-Menten empirical rate law is obtained 



S. M. T. de la Selva et al. / The simple Michaelis-Menten mechanism 187 

f rom the independent  equat ions associated to the Michae l i s -Menten  mechan i sm 
near  equil ibrium, as the first order  solut ion in the paramete r  eokl/(k2 + k3). This is 
so because the equat ions  satisfy the required fo rm that  exhibits the existence 
[8,17] of  two different t ime scales when eokl/(k2 + k3) is small. To  see this feature, 
it is convenient  to change f rom the representat ion (p, c) to (s, c). The  two indepen- 
dent  equat ions to be considered now are the first and the third one in (2.2), which 
with the help of(2.4), in the case co = 0, become 

ds 
- k l s ( e o -  c) +k2c ,  (4.1) 

dt 

dc 
a t  = kls(eo - c) - (k2 + k3)c. (4.2) 

Recast ing them into a dimensionless form with the help of  the variables u, o-, and  
"r, defined as follows: 

T k 2 + k 3  
t = k l e o ,  c - u e o ,  s - o -  kl ' (4.3) 

we get 

do- 

d~- 

and 

- o . (1  - u )  + - -  
k2  

u (4.4) 
k2 + k3 

(4.5) 

( 4 . 6 a )  

d u / d T - - ,  oo while de~dr  remains 

d u  k2 q- k3 
- - - [ o . ( 1  - u )  - v ] .  

d'r kl eo 

F r o m  eqs. (4.4) and (4.5) we see that  as 

kl 
e - e0 k2 + k3 

goes to zero, according to condi t ion (3.3), 
unchanged,  thus identifying u as the fast variable. 

Fol lowing the s tandard  procedure  [ 17], we substi tute 

~ ( T )  = /J (0)(T)  -t- ' /~ (1) (T)  -{- £2 / / (2 ) (T)  -t- . • • (4.6b) 

in eq. (4.5) and require the different orders to be equal on bo th  sides of  the equat ion;  
the results u (°), u0), . . .  thus obta ined are subst i tuted in eq. (4.4). To first order,  
namely  e -1 , f rom eq. (4.5) we obtain 

~(o) 
u (°) -- (4.7a) 

- 1 + o.(0) 

and u p o n  subst i tut ion in eq. (4.4) 
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do- k3 cr (0) 
d'r k2 -k- k3 1 -k- o "(0) " (4.7b) 

Rever t ing to the original variables and remember ing  that  Co = 0 for eq. (3.1), we 
arrive at the Michae l i s -Menten  rate law, 

ds -k3eos 
- , ( 4 . 8 )  

dt Ks + s 

which in this approx imat ion  is the same as eq. (3.1). This can be seen upon  substi tu- 
t ion of  eq. (4.7a) into eq. (2.6) after the t ransformat ion  (4.3) is applied to it. To  
the next  order  in e, we obtain 

eoKss eok2K 2 ] d s _ - k 3 e o s  1 . (4.9) 
dt Ks +-------7 (K + s) 3 k,(K-~s) 3] 

The fo rm ofeqs.  (4.4) and (4.5) and the result (4,8) show that  indeed the concen- 
t ra t ion of  complex  c is a fast variable, namely a non-detectable  one in the t ime scale 
ofs.  This is equivalent  to saying that  the sum of  the rates of  the complex  decomposi-  
tion, into the substrate and product ,  k2 + k3, is greater than  its rate of  fo rmat ion  
kl e0; not  simply tha t  k2 + k3 << kl [7]. The fact that  the Michae l i s -Menten  rate law 
is recovered f rom the mechanism by a per turbat ive approx imat ion  in the pa ramete r  
eokl / (k2 + k3) justifies the compar ison  made  in (3.7). 

Wi th  respect to the case when k3/kleo << 1, near  equil ibrium, we rewrite the 
equat ions  for the rate of  change of  concentra t ions  of  the substrate,  complex and 
p roduc t  in (2.2) in terms of  the paramete r  A ~ k3/kleo. To do so we in t roduce the 
variables 0, ~, ~r defined as 

0 = k3t ,  s = @0, p = ~re0, (4.10) 

and find tha t  it is the pair of  equations,  for the complex concent ra t ion  and the prod-  
uct  concentra t ion,  the one that  exhibits a two t ime behavior  with the former  one 
as a fast variable and the latter as a slow one. The appl icat ion of  the s tandard  proce- 
dure  to these two equat ions leads to an al together different rate law f rom the 
Michae l i s -Menten  one that  has been repor ted  in ref. [8] and  discarded, as we also 
do, on the grounds  that  only if such a rate law is experimental ly found,  the compar -  
ison between (3.2b) and (3.12) is pertinent.  

To  examine the approximate  behavior  that  the mechan i sm predicts near  the 
beginning of  the react ion (inner solution), following ref. [8] we define the t ime scale 

- r / e ;  but  notice that  here the smallness parameter  is the one defined in (4.6a). 
In the E t ime scale, eqs. (4.4) and (4.5) become 

da k2 
- -  - u ,  ( 4 . 1 2 )  dE  ecr(1 u) + e k2 + k3 
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dv 
d---~ = [~r(1 - v) - v], (4.13) 

to which the initial conditions v0 --- 0 and or0 = so~Ks apply. The solution to these 
equations is the same as the one reported in ref. [8]. This is enough to show that the 
method  employed there applies with the perturbative parameter eo/Ks, which is 
the true one yielding eq. (3.1) from the mechanism (2.1) independently of  the ratio 
eo/so. This fact further stresses the applicability of the rate law (3.1) to situations 
of  high or low ratio co~so. 

One might ask if the system of  eqs. (4.1), (4.2) will exhibit a fast and a slow vari- 
able when Ks~co << 1, thus allowing the elimination of the fast one. The answer is 
yes, but the resulting rate laws for this pseudo-steady state approximation are not 
Michaelis-Menten's.  This can be verified by choosing the following dimensionless 
variables: 

0 =-- (k2 + k3), s -= Ceo, p =- 7reo, c =_ veo, 

and finding that the complex concentration equation and the product  concentra- 
tion equation constitute a pair of equations for fast and slow variables, respectively, 
when Ks/eo goes to zero. 

For  the sake of clarification, let us finally comment  upon the conditions 
eo/so << 1 and eo/(So + Ks) << 1 that  have been shown, by other authors [5,7-9,14], 
to make compatible the reaction mechanism and the Michaelis-Menten rate law. 
It happens that the selection of a smallness parameter is not unique. One must pay 
attention to additional information. What  we have done here is to notice that  the 
exact long time slope given by eq. (2.30) does not contain the initial condition so; 
there is no mathematical  reason to introduce it. 

But, one may resort to other sources of information. At the time when the condi- 
tion co/so << 1 was proposed [7,8], many experimental set-ups satisfied it, which 
resulted in Michaelis-Menten kinetics. Hence, the selection of dimensionless vari- 
ables was made in such a way as to force the appearance of s0. A moment  of thought  
will convince the reader that the selection of dimensionless variables v and 7- as in 
(4.3) with y - s/so [8], which makes eqs. (4.1) and (4.2) look like a fast-slow pair 
with the small parameter co/so, does so because one is multiplying and dividing by 
so, but in fact it is eokl / (k2 q- k3) << 1 that is operating. 

One can also consider the pseudo steady state hypothesis itself to find the explicit 
expressions for the two time scales, and from them exhibit col(so + Ks) as the small- 
ness parameter  [5,14] even with the accompanying rules to choose smallness param- 
eters, but the pseudo steady state is an approximation and, thus, has led to a less 
strong criterion that the one we find in a very simple but rigorous way from the 
mechanism without invoking the pseudo steady state hypothesis itself. Notice also 
that co/Ks is compatible with the exact long time slope from the reaction mechan- 
ism which does not contain so whereas eo/(So + Ks) is not. Let us stress the fact that  
Ks is a constant of the given reaction, whatever the initial conditions, whereas so is 
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a constant  of the experiment, i.e. it may change with each experiment for the same 
reaction; the same can be said about e0 but in contrast with so, eo is observed in 
the long-time slope. 

5. Conc lus ions  

In the present communication,  we have demonstrated several properties and fea- 
tures of the simple Michaelis-Menten mechanism. The main ones are embodied 
by eqs. (2.12), (2.21), (2.29) and (2.30), which are exact results. We illustrate them 
with the help of  figs. 1-3. Several approximations to eqs. (2.29) and (2.30) have 
been presented, and through them, it is possible to show that the condition under 
which the Michaelis-Menten mechanism yields the empirical rate law (3.1) from 
singular perturbation analysis is precisely the ratio eo/Ks to be small compared to 
unity. 

That  this is a sufficient restriction in order to recover the Michael is-Menten 
rate law from the mechanism, comes from the fact that the exact value of the near 
equilibrium slope in the space of the empirical rate law (s, p), predicted by the 
mechanism, given by eq. (2.30) with eq. (2.21), depend only on the initial concentra- 
tion of  the enzyme and the Arrhenius constants of the reaction mechanism. There- 
fore the substrate concentration plays no role whatsoever in the approximations 
that ~ follow from the exact slope. Also, within the context of the slow manifold 
method  [21], it is shown that as a consequence of the fact that eqs. (2.2) are not  expli- 
citly dependent on the initial substrate concentration, the functional at tractor 
equation also does not. Furthermore,  the condition eo/(So + Ks) << 1 is a less strin- 
gent criterion, since whenever eo/Ks << 1 holds, then eo/(so + Ks) << 1 also holds, 
but the converse is not true. Thus, it is because eo/K, << 1 is obeyed that  
eo/(So + Ks) << 1 is obeyed. 

Finally, it has also been shown that the condition Ks/eo << 1 leads, through a 
fast variable elimination, to rate laws different from Michaelis-Menten's.  

The conclusion is therefore, that  the Michaelis-Menten mechanism is acceptable 
for a chemical reaction that yields the Michaelis-Menten experimental rate law, 
when the values of the Arrhenius constants, which depend on the chemical nature 
of the reacting species, are such that the ratio of initial concentration of the enzyme 
to the Michael is-Menten constant is much smaller than unity, that is, when 
eo/Ks << 1 holds regardless of  the value of  the ratio of initial enzyme concentration 
to initial substrate concentration. 
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